An exponential inequality under weak dependence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Theory for Nonlinear Quantile Regression under Weak Dependence

This paper studies the asymptotic properties of the nonlinear quantile regression model under general assumptions on the error process, which is allowed to be heterogeneous and mixing. We derive the consistency and asymptotic normality of regression quantiles under mild assumptions. First-order asymptotic theory is completed by a discussion of consistent covariance estimation.

متن کامل

A Berry-Esseen Theorem for Sample Quantiles Under Weak Dependence

This paper proves a Berry–Esseen theorem for sample quantiles of strongly-mixing random variables under a polynomial mixing rate. The rate of normal approximation is shown to be O(n) as n→∞, where n denotes the sample size. This result is in sharp contrast to the case of the sample mean of strongly-mixing random variables where the rate O(n) is not known even under an exponential strong mixing ...

متن کامل

Convergence to Lévy stable processes under some weak dependence conditions

For a strictly stationary sequence of random vectors in R we study convergence of partial sums processes to a Lévy stable process in the Skorohod space with J1-topology. We identify necessary and sufficient conditions for such convergence and provide sufficient conditions when the stationary sequence is strongly mixing.

متن کامل

Asymptotic expansions for sums of block - variables under weak dependence

Let {X i } ∞ i=−∞ be a sequence of random vectors and Y in = f in (X i,ℓ) be zero of length ℓ and where f in are Borel measurable functions. This paper establishes valid joint asymptotic expansions of general orders for the joint distribution of the sums n i=1 X i and n i=1 Y in under weak dependence conditions on the sequence {X i } ∞ i=−∞ when the block length ℓ grows to infinity. Similar exp...

متن کامل

Efficient Co-Training of Linear Separators under Weak Dependence

We develop the first polynomial-time algorithm for co-training of homogeneous linear separators under weak dependence, a relaxation of the condition of independence given the label. Our algorithm learns from purely unlabeled data, except for a single labeled example to break symmetry of the two classes, and works for any data distribution having an inverse-polynomial margin and with center of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2006

ISSN: 1350-7265

DOI: 10.3150/bj/1145993977